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The Bias Functional (BF) approach is a variational method which enables one to efficiently gener-
ate ensembles of reactive trajectories for complex biomolecular transitions, using ordinary computer
clusters. For example, this scheme was applied to simulate in atomistic detail the folding of proteins
consisting of several hundreds of amino acids and with experimental folding time of several minutes.
A drawback of the BF approach is that it produces trajectories which do not satisfy microscopic
reversibility. Consequently, this method cannot be used to directly compute equilibrium observables,
such as free energy landscapes or equilibrium constants. In this work, we develop a statistical anal-
ysis which permits us to compute the potential of mean-force (PMF) along an arbitrary collective
coordinate, by exploiting the information contained in the reactive trajectories calculated with the
BF approach. We assess the accuracy and computational efficiency of this scheme by comparing its
results with the PMF obtained for a small protein by means of plain molecular dynamics. Published
by AIP Publishing. https://doi.org/10.1063/1.5006039

I. INTRODUCTION

Thermally activated conformational transitions are
involved in many biological functions performed by proteins
and other biomolecules. The number of amino acids participat-
ing in these structural changes can vary significantly, ranging
from a few units to even several hundreds, as in some large
allosteric transitions or in protein folding.

From a theoretician’s perspective, the problem of investi-
gating the dynamics of protein thermally activated structural
reactions involves two distinct main tasks. The first challenge
consists in generating an ensemble of statistically significant
reactive trajectories connecting the reactant and product states,
in configuration space. The second challenge involves reduc-
ing this large amount of data, in order to extract the relevant
physico-chemical information. This second problem includes,
for example, identifying and structurally characterizing long-
lived metastable states and estimating the rate limiting free
energy barriers.

Tackling both such challenges requires an extensive use
of computational resources. A first reason is the large number
of degrees of freedom present in proteins and in their hydra-
tion shells. A second reason is that the relevant time scales of
large conformational reactions are many orders of magnitude
longer than the short time scales associated with fast atomic
vibrations or even local rearrangements of the polypeptide
chain.

For example, in protein folding (for recent reviews, see,
e.g., Refs. 1 and 2), the longest relevant time scale is the fold-
ing time (or inverse folding rate), i.e., the average time it takes
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for the chain to reach the native state for the first time, starting
from the unfolded state. According to the Kramers-Arrhenius
theory, this time scale increases exponentially with the height
of the barrier separating the two states, τ = τ0 exp[∆G/kBT ],
where the pre-factor τ0 is typically in the µs time scale. Since
the folding energy barriers vary from a few to many units of
thermal energy kBT, the folding times span over many orders
of magnitude, ranging from ms to even minutes. In contrast,
elementary local rearrangements of the chain, such as the rota-
tion of a dihedral angle or the formation of a hydrogen bond,
usually occur over time scales ranging from several ps to a
few ns.

Fortunately, in order to gain microscopic insight into the
reaction mechanism, one does not necessarily need to simulate
the time evolution of the system for times as long as the mean-
first-passage time. Indeed, productive reaction pathways are
very rapid events: it has been shown that the so-called tran-
sition path time (TPT)—i.e., the time it takes for a system
to reach the product along productive reactive trajectory—
scales only logarithmically with the height of the barrier,
τTPT ' τ0 log[α∆G/kBT ].3,5 This result explains why proteins
with widely different folding times have comparable TPTs,
typically in the few µs range.4 In view of these considera-
tions, it is clear that the most efficient way to investigate the
reaction mechanism consists in sampling directly the produc-
tive reaction pathways, without wasting computational time to
simulate uninteresting thermal oscillations in the reactant or
generate unsuccessful reactive attempts, as one would do in
plain molecular dynamics (MD) simulations.

Many advanced methods and algorithms have been pro-
posed in order to lower the computational cost of gener-
ating reaction pathways for rare biomolecular transitions
(for a recent review, see, e.g., Refs. 6). In this context, the
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path integral (PI) formalism of stochastic dynamics (which
is briefly reviewed in the Appendix) offers an attractive
theoretical framework because it enables to express the
conditional probability to perform the conformational tran-
sition in a given time interval t as a sum over all possible
reactive trajectories connecting reactants and products, in
the molecule’s configuration space. In particular, within
the framework of Langevin dynamics, it is possible to
compute the statistical weight of each of such reaction
pathways.

Based on the path integral formalism, a stochastic algo-
rithm called Transition Path Sampling (TPS) was devel-
oped which enables to rigorously sample the ensemble of
reactive trajectories.7 Unfortunately, applications of TPS to
protein folding or to other comparably complex protein
conformational reactions are computationally very expen-
sive. This limitation has triggered the development of several
approximation schemes, aiming to further lowering the com-
putational load associated with sampling the stochastic PI.
Some of these methods focus on the most probable reac-
tion pathways.8–12 All these techniques are based on apply-
ing global optimization algorithms in order to explore the
space of reaction pathways starting from a given initial trial
trajectory and maximize a target functional of the reactive
path, e.g., related to its probability to occur in a Langevin
dynamics.

A main limitation of all these path optimization schemes
is that they typically produce results which are strongly corre-
lated with the initial trial guess. Indeed, even using state-of-the
art global optimization algorithms, the exploration of the path
space is restricted to the functional neighbourhood of the initial
trajectory. Furthermore, this type of calculations can only be
performed using implicit solvent models. The reason is that, in
an explicit solvent calculation, the target functional to be opti-
mized would be dominated by the solvent degrees of freedom
and basically insensitive to the reaction pathway undertaken
by the solute.

The Bias Functional (BF) approach13,14 was developed in
order to overcome these two limitations. This method is based
on combining a special kind of biased MD called Ratchet-
and-Pawl MD (rMD)15,16 with a new variational principle,
rigorously derived from the PI representation of Langevin
dynamics.14 Namely, the BF approach is based on the fol-
lowing two-step procedure: first, rMD is used to generate
many independent biased reaction pathways. Next, the vari-
ational principle is applied to this ensemble of trial paths, to
identify the biased trajectories which have the largest prob-
ability to occur in an unbiased simulation. This way it is
possible to explore larger regions of the space of reaction
pathways by comparing many statistically uncorrelated tra-
jectories. We also emphasize that in the rMD, the effect of the
bias is kept to a minimum, since no bias is applied to the sys-
tem, as long as it spontaneously progresses towards the prod-
uct state. A harmonic history-dependent force is introduced
only to discourage spontaneous backtracking towards the
reactant.

A second attractive feature of the BF approach is that it
can be used to perform explicit solvent calculations. Indeed,
the variational principle of the BF approach is based on a target

functional which does not depend at all on the solvent degrees
of freedom.

The BF technique and its closely related precursor, called
dominant reaction pathway, have been successfully applied to
investigate very slow and complex protein folding or confor-
mational transitions, using both implicit and explicit all-atom
force fields, providing results in good agreement with exper-
iments.17–20 A remarkable example is provided by the simu-
lation of folding17 and latency transition18 of serpin proteins,
which consist of nearly 400 amino acids and have folding times
as long as tens of minutes.

An important limitation of the BF approach is that the
rMD biasing force depends on the path “history” and there-
fore violates the requirement of microscopic reversibility. As
a consequence, even after applying the variational condi-
tion, in the BF scheme, it is impossible to extract thermo-
dynamical and kinetic information directly from the reactive
trajectories.

In this work, we tackle this limitation of the BF scheme
by introducing a rigorous method to efficiently compute the
potential of mean-force (PMF) along an arbitrarily chosen
collective coordinate. A number of sophisticated techniques
have been developed to compute the free energy as a func-
tion of one or few collective variables,21–25 to directly extract
information about the reaction kinetics,26–28 or to achieve
a low-resolution representation of reaction kinetics based
on Markov state models.29–32 Unfortunately, all these meth-
ods are in general very computationally demanding when
applied to the characterization of complex structural reac-
tions, such as protein folding. The method we introduce in
this work is much less computationally expensive because
it exploits the information contained in the reactive trajec-
tories calculated by the BF approach, thus focusing on the
region of configuration space which is visited by the reactive
pathways.

To illustrate and validate our algorithm, we apply it to
investigate the folding of the FIP35 WW-domain. The dynam-
ics of this small protein has been extensively investigated by
means of ultra-long plain MD simulations performed using
an all-atom force field on the Anton special purpose super-
computer33 and by means of world-wide distributed comput-
ing.34 In particular, using the long MD trajectories generated
by Anton, it is possible to elucidate the folding mechanism
and profile the PMF as a function of an arbitrary collective
variable. First, we report on BF protein folding simulations
performed at the same temperature, using the same force field,
and we compare the folding mechanisms in the two simu-
lations. Next, we compute the PMF of the fraction of native
contacts and compare it with the same function calculated from
a frequency histogram of equilibrium MD trajectories, again
finding consistent results. It should be stressed that our sim-
ulations were performed in a few days on a small computer
cluster.

The paper is organized as follows. In Sec. II, we provide
short description of the BF approach and the related rMD algo-
rithm. In Sec. III, we introduce our algorithm to evaluate the
PMF along a reaction coordinate and we discuss the compari-
son to the Anton data. The main conclusions are summarized
in Sec. IV.
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II. THE BF APPROACH

In this section, we briefly review how the BF algorithm
is used to sample the ensemble of reaction pathways of a
protein. The underlying theoretical foundation is reported in
the Appendix. Even though we shall focus on applications to
protein folding, this algorithm can be applied to simulate arbi-
trary conformational transitions in which the product state is
structurally characterized with atomic resolution.

The BF algorithm consists in the following multi-step
procedure:

1. Sampling of the denatured state: An initial denatured
configuration is generated, for example, by running short
MD simulations at high temperature, starting from the
crystal native structure (thermal unfolding).

2. Generating many trial folding pathways: Many biased
simulations initiated from the initial configuration gen-
erated at step 1 are used to produce several indepen-
dent folding trajectories. In this dynamics, an unphys-
ical biasing force is introduced in order to discourage
backtracking towards the unfolded state,15

Fi(X , t) = −kR ∇iz(X) (z(X) − zm(t)) θ(z(X) − zm). (1)

Here, θ(x) is the Heaviside step-function and z(X) is a
collective coordinate16 defined as

z(X) =
N∑

|i−j |>35

[Cij(X) − C0
ij]

2, (2)

which measures the distance between the instantaneous
contact map Cij(X) and the native contact map C0

ij
= Cij(XN ). The entries of the contact maps are continuous
and given by

Cij(X) =
1 −

(
|xi−xj |

r0

)6

1 −
(
|xi−xj |

r0

)10
. (3)

The constraint |i − j | > 35 in the summation in Eq. (2)
is introduced in order to exclude the contribution from
neighbouring atoms, while the constant r0 = 7.5 Å in
Eq. (3) provides a reference distance for native contacts.
In addition, a cutoff is usually introduced that sets Cij(rij)
= 0 for atomic distances larger than a threshold, rij > rc

' 1.2 nm. This ensures that the computational cost of
the simulation scales linearly with the number of atoms
in the protein. The function zm(t) in Eq. (1) represents
the minimum value assumed by the collective variable z
along the rMD trajectory, up to time t.

We emphasize that the biasing force (1) is not active
whenever the chain spontaneously evolves towards more
native-like configurations, along the direction defined
by z, i.e., when z[X(t +∆t)]< zm(t). Conversely, a force
proportional to z[X(t)] � zm(t) sets in when the chain
attempts to backtrack towards the unfolded state, i.e., for
z[X(t + ∆t)] > zm(t).

3. Selecting the most likely rMD trial path: The set of
trial folding trajectories generated at step 2 are scored

according to the following functional:

T [X] =
∫ t

0
dτ

∑
i

1
4kBTmiγi

|Fi(X, τ)|2, (4)

which we shall refer to as the bias functional. The best
scoring trajectory is referred to as the least biased one. In
the Appendix, we explicitly show that the rMD trajectory
with the least value of this target functional coincides with
the one with the largest probability to occur in an unbi-
ased Langevin simulation. Therefore, restricting to such a
minimum bias path provides a variational approximation
of the folding trajectory.

4. Generating an ensemble of least biased trajecto-
ries: Steps 1 through 3 are repeated for different initial
unfolded conditions.

Using this algorithm, it is feasible to compute protein
folding trajectories of proteins consisting of even a few hun-
dred amino acids, using relatively modest computer resources,
typically consisting of O(102) cores. This computational effi-
ciency is due to the fact that for each initial condition, one
needs to generate about 20-40 trial rMD independent folding
trajectories, which are only less than 1 ns long—for a discus-
sion of the convergence criteria in the variational search, see
Ref. 14.

In the following, we report on the results of BF simulations
of the folding of FIP35 WW domain (pdb code: pin1), which
is one of the smallest and fastest folding proteins. We used the
AMBER99FS-ILDN all-atom force field36 in explicit TIP3P
water, to allow for a direct comparison with the results obtained
for the same system by means of plain MD simulations, using
the Anton supercomputer.33

We produced 8 different initial conditions by thermal
unfolding simulations at the temperature T = 800 K, initi-
ated after energy relaxing the crystal native structure shown
in Fig. 1. From each of such unfolded configurations, we gen-
erated 20 trial folding trajectories by means of 0.5 ns of rMD
at T = 395 K, with initial momenta sampled from a Maxwell-
Boltzmann distribution. The system was coupled to the Nosé-
Hoover thermostat and to the Parrinello-Rahman barostat, in
order to replicate the same conditions of the simulation car-
ried out in Ref. 33. The coupling constant of the rMD bias was
set to kR = 3 × 10−4 kJ/mol. With this value, the square mod-
ulus of the total biasing potential is always at least two orders
of magnitude smaller than the physical potential energy. For
each initial condition, the least biased trajectory was selected
out of the 20 trial rMD pathways using the minimum BF
criterium.

The eight BF folding trajectories projected onto the plain
selected by the Root Mean Square Distance (RMSD) of the
two hairpins to their native structure is shown in the left
panel of Fig. 1. The heat-map in the background describes
the free energy landscape calculated from a frequency his-
togram of the Anton MD trajectories. In agreement with our
previous finding,14 we see that the BF trajectories reach the
native state by traveling along low free energy regions and
describe the correct folding mechanism, i.e., one in which the
two hairpins fold in sequence. A more quantitative analysis
demonstrating the consistency between the folding mechanism
predicted by BF and MD simulations was presented in Refs. 14
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FIG. 1. The left panel reports the 8 folding pathways
obtained with the BF approach, projected onto the plane
identified by the RMSD to native of the two hairpins
of FIP35 (crystal structure shown in the right panel).
The heat map in the background is the free energy as
a function of the same collective variables obtained from
a histogram of plain MD simulations performed on the
Anton supercomputer.

and 35. The folding mechanism of much larger polypeptide
chains predicted by BF was validated against experiment in
Refs. 17–19.

We conclude this section by discussing the main draw-
backs of the BF approach. Like any variational approximation,
this method may suffer from systematic errors related to the
choice of the trial space. In particular, low accuracy is gener-
ally expected whenever the quality of the rMD trajectories is
poor. This scenario is realized if the collective variable z given
in Eq. (2) is not a good reaction coordinate. This problem was
solved in a recent work,35 by developing an improved iterative
rMD algorithm which enables to correct the collective coor-
dinate in a self-consistent way. We demonstrated that the trial
paths obtained with this new type of rMD dynamics are biased
along the average unbiased folding trajectory and that the cor-
responding biasing collective coordinate provides a stochastic
estimate of the reaction coordinate.

A second important limitation of the BF approach arises
from the fact that the rMD trajectories do not satisfy the
microscopic reversibility condition. As a consequence, the
corresponding time scales do not have a direct physical inter-
pretation and the BF trajectories cannot be used to extract
in a straightforward way the information about the relevant
metastable states and free energy barriers involved in the fold-
ing transition. In Sec. III, we present an algorithm to tackle
this limitation.

III. COMPUTING FREE ENERGY PROFILES FROM
BF SIMULATIONS

A commonly adopted strategy to gain insight into reaction
mechanisms in complex molecular systems consists in project-
ing the very high dimensional configuration space into a single
collective variable, which is assumed to approximate the reac-
tion coordinate. Using Zwanzig-Mori projection formalism, it
can be shown that this collective variable evolves according to
a generalized Langevin equation.37,38 In addition, if the char-
acteristic relaxation time scales of this collective variable are
much longer than that those of all internal degrees of freedom
in the system, then the generalized Langevin equation can be
replaced by a standard over-damped Langevin equation, which
depends only on the diffusion coefficient and on the PMF of
the collective variable.

In principle, the PMF G(Q) can be estimated from an
ensemble of equilibrium configurations, e.g., sampled from

long MD trajectories. Indeed, if Peq(Q) is the probability of
observing a value Q at equilibrium (which can be estimated
from a frequency histogram), then G(Q) is defined by

G(Q) = −kBT log Peq(Q). (5)

This method is in principle exact, but computationally
extremely expensive. Indeed, it requires simulating the dynam-
ics for a time scale sufficiently long to attain complete thermal
equilibrium. For most polypeptide chains of biophysical or
biological interest, the sampling of the equilibrium distribution
Peq(Q) remains a formidable computational challenge, even
using advanced Monte Carlo algorithms or more sophisticated
methods.23,24

In the following, we devise an alternative scheme which
exploits the results of BF simulations and enables us to com-
pute G(Q) in a very computationally efficient way. For the sake
of simplicity, to illustrate the approach, we shall assume that
the slow dynamics of the collective variable Q can be effec-
tively described by an over-damped Langevin equation with a
uniform diffusion coefficient D0,

Q̇ = −
D0

kBT
G′(Q) + η(t). (6)

The probability distribution generated by integrating
Eq. (6) evolves according to the Fokker–Planck equation,

∂

∂t
P(Q, t) = F̂P(Q, t), (7)

where

F̂ = D0
d

dQ

(
d

dQ
+

1
kBT

G′(Q)

)
. (8)

In such a framework, an arbitrary initial probability den-
sity ρ0(Q) changes in time according to an evolution operator
defined by

P(Q, t) = e−F̂t ρ0(Q). (9)

Equivalently, Eq. (9) can be written in terms of the conditional
probability to perform a transition form Q′ to Q in time t (i.e.,
the propagator),

P(Q, t) =
∫

dQ′ P(Q, t |Q′, 0) ρ0(Q′). (10)

Some general properties of the dynamics defined by
Eq. (7) are in order. Even though the F̂ operator is not Her-
mitian, its left and right eigenfrequencies coincide and are
real,

→

F̂ Rk(Q) = λk Rk(Q), (11)
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Lk(Q)
←

F̂ = λk Lk(Q), (12)

while left and right eigenstates are related by a non-unitary
transformation,

Lk(Q) = eβG(Q)Rk(Q), (13)

and obey the orthogonality condition∫
dQLk(Q)Rm(Q) = δkm. (14)

In particular, the lowest eigenfrequency vanishes, λ0 = 0.
The corresponding right-eigenstate is the Gibbs distribution,
R0(Q)= 1

Z e−βG(Q), while the lowest left-eigenstate is the iden-
tity, L0 = 1. It can be also shown that, for a two-state system,
the function L1(Q) is monotonic and is closely related to the
committor probability.39

The probability distribution P(Q, t) evolving according
to Eq. (9) can be expanded in terms of the right and left
eigenstates,

P(Q, t) =
∑

k

ck e−λk tRk(Q),

(
ck =

∫
dQLk(Q)ρ0(Q)

)
.

(15)
The long-time evolution is governed by the lowest frequency
modes,

lim
t→∞

P(Q, t) =
1
Z

e−βG(Q) + c1R1(Q) e−λ1t + c2R2(Q) e−λ2t . . . ,

(16)
where the dots represent terms which are exponentially sup-
pressed at large times, i.e., for t� 1/(λ3 − λ2). Equation (16)
implies that, in order to attain thermal equilibrium starting
from an arbitrary initial distribution ρ0(Q), the system needs
to evolve for a time t� λ−1

1 . Thus, λ1 is interpreted as the
inverse thermal relaxation time scale.

Higher eigenfrequencies λ2, λ3, . . . are associated with
faster local relaxation processes, e.g., those within the local
metastable states. In particular, if the free energy surface dis-
plays two local minima separated by a single thermally acti-

vated barrier∆G, then λ1 ∼ e−
∆G
kBT and decouples from all other

eigenfrequencies, i.e., λ1
λ2
� 1.

We recall that we are assuming that Eq. (7) describes at the
effective level the evolution of the collective coordinate eval-
uated along microscopic trajectories in configuration space.
Let us consider the case in which the dynamics of our molec-
ular system is generated starting from an ensemble of initial
microscopic configurations characterized by some probability
distribution P0(X) and let

ρ0(Q) =
∫

dX P0(X) δ(Q − fQ(X)), (17)

where f Q(X) is the function of the molecular configuration X
which defines the collective coordinate Q.

From (16) it follows that if the distribution ρ0(Q) is such
that c1 = 0, then the convergence to the thermal equilibrium
distribution starting from the ensemble of configurations with
probability P0(X) would take a time ∼1/λ2, exponentially
shorter than the thermal relaxation time, 1/λ1. This would
provide a computationally efficient scheme to obtain the PMF
G(Q) from short MD simulations, of length t & 1/λ2.

How can we sample an ensemble of initial conditions with
a distribution of collective variables ρ0(Q) such that c1 ' 0? To
address this problem, let us focus on a two-state system and
imagine to evaluate the time-dependent probability distribu-
tion P(Q, t) obtained evolving some initial distribution ρL(Q)
entirely localised in the reactant. We conventionally choose
the reactant to be the leftmost minimum of G(Q). Let J(Q, t)
be the corresponding probability current,

J(Q, t) = D0

(
d

dQ
+ βU ′(Q)

)
P(Q, t). (18)

We now specialize even further, by choosing to consider
time intervals t much shorter than thermal relaxation time
scale, yet much longer than the time scale associated with
local relaxation within each metastable states, i.e.,

1
λ2
� t �

1
λ1

. (19)

In such a time regime, the reactive current J(Q, t) is nearly
steady. This can be shown by applying expansion (15),

J(Q, t) =
∑
k>0

ck Jk(Q) e−λk t , (20)

where

Jk(Q) ≡ D0

(
d

dQ
+ βU ′(Q)

)
Rk(Q). (21)

In the intermediate time regime (19), only the contribution pro-
portional to R1(Q) in Eqs. (20) and (21) survives. Indeed, the
contribution from R0(Q) vanishes identically, while all terms
with k > 1 are exponentially suppressed. Furthermore t� 1/λ1

so exp(−tλ1)' 1. Thus we have

J(Q, t) ' c1J1(Q), for
1
λ2
� t �

1
λ1

. (22)

We note that the function J1(Q, t) does not change sign, since
J1(Q) = D0

d
dQ L1(Q) and L1(Q) is a monotonic function. Thus,

this function defines a probability density.
It has also be shown that, in the time regime (19), the

probability density J1(Q) measures the probability of observ-
ing the value of Q in the in the reactive pathways—see, e.g.,
Eq. (99) of Ref. 41. The physical reason behind this result is
that, in the steady reactive current regime (19), the probabil-
ity current flowing across the transition state is dominated by
single barrier crossing transitions. Therefore, the distribution
of values of Q in reactive trajectories yields J1(Q).

Finally, we note that J1(Q) satisfies the desired property

c1 ∝

∫
dQL1(Q)J1(Q) =

∫
dQL1(Q)

(
d

dQ
+ β

d
dQ

G(Q)

)
× e−βG(Q)L1(Q)

=

∫
dQL1(Q)

d
dQ

L1(Q)

=
1
2

∫
dQ

d
dQ

L2
1(Q) = 0. (23)

Therefore, a Fokker-Planck time evolution of the initial dis-
tribution J1(Q) is expected to very rapidly attain thermal
equilibrium, within a time scale ∼ λ−1

2 � λ−1
1 .

At this point, the benefit coming from the application
of the BF method becomes evident: This variational approx-
imation of the reaction pathways enables us to obtain an
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FIG. 2. Left panel: double well free energy surface of the toy model and corresponding J1(Q) distribution (see text). Central and right panels: lowest two left
eigenstates and right eigenstate of the F̂ operator.

approximation of the J1(Q) distribution, from a frequency
histogram of the values of Q attained by the reactive tra-
jectories. According to Eq. (10), the time evolution of the
J1(Q) distribution can be implemented by running many plain
MD simulations, initiated from protein configurations with
the same values of Q. If such an evolution lasts for a time
∼λ−1

2 , then P(Q, t) will converge to its equilibrium distribution
Peq(Q), from which one immediately obtains the PMF through
Eq. (5).

A. Illustration in a toy model

It is instructive to first analyze how this fast thermal relax-
ation works in a simple one dimensional model. We imagine a
molecular system undergoing a two-state conformational reac-
tion described by some collective variable Q with PMF given
by

G(Q) = G0(Q2 − 1)2, (24)

with G0 = 1, D0 = 1, and kBT = 0.3, in some appropriate units
(see the left panel of Fig. 2). In the central and right
panels of Fig. 2, we show, respectively, the correspond-
ing two lowest right and left eigenstates, assuming a ther-
mal energy kBT = 0.3. We note that, as expected, the L1(Q)
function is monotonic, locally odd in the transition region,
and null at the transition state. J1(Q) is even in the tran-
sition region and approximately constant near the transition
state.

According to the arguments discussed above, we expect
that evolving in time the initial distribution ρ0(Q)∝ J1(Q)
should very rapidly lead to the thermal equilibrium distribu-
tion. This feature is clearly illustrated in Fig. 3 which shows
the time evolution of P(Q, t) evaluated by integrating the
Langevin equation starting from initial conditions sampled
from two different initial distributions: (i) a sharp Gaussian,
peaked near one of the metastable minima [for which c1 ∼ o(1)]
and (ii) a flat distribution in the transition region (which

FIG. 3. Relaxation to thermal equilibrium in the double-well energy surface, starting from two different initial distributions.
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models the transition current distribution and obeys c1 = 0).
As expected, the first distribution relaxes to equilibrium about
40 times more slowly than the second distribution. This ratio
of relaxation time scales is consistent with the fact that, for
this system, λ2/λ1 ∼ 50.

B. Realistic application

Let us now see how this result can be used to profile the
PMF of protein FIP35, along a specific reaction coordinate.
In particular, we choose the fraction of native contacts, which
can be defined as follows:

Q(X) =

∑
|i−j |>4 θ(r0 − rij(X)) θ(r0 − rij(XN ))∑

|i−j |>4 θ(r0 − rij(XN ))
. (25)

In this equation, rij is the distance between the ith and jth Cα

atoms and r0 = 7.5 Å is a typical reference value for a native
contact. Note that the theta-function θ(r0 � rij(XN )) restricts
the summation to the pairs of Cα atoms which are in con-
tact in the native state, while the denominator contains the
total number of native contacts. The constraint |i− j | > 4 in the
summation excludes the contribution of the amino acids which
are topologically close along the polypeptide chain. In Ref. 40,
it was shown that Q correlates relatively well with the com-
mittor probability for small globular proteins. Furthermore,
in the same work, it was shown that the diffusion coefficient
depends rather weakly on Q, so the approximation D(Q) ' D0

is reasonable.
In practice, we implemented our method to profile the

PMF, by adopting the following procedure:

1. We evaluated JBF
1 (Q) [the BF estimate for J1(Q)] from

a frequency histogram of values of Q visited along the 8
reaction pathways computed with the BF approach.

2. We clustered the frames visited by the 8 folding trajecto-
ries according to their value of Q, which was defined on
a discrete mash with bin size ∆Q = 0.02.

3. We randomly picked 6 frames from each of such clus-
ters of configurations and used them as starting point for

5 ns of plain MD simulation. MD trajectories have been
computed following the same simulation setup of the
rMD simulations.

4. We performed a weighted histogram of the values of Q
visited during such MD simulations, using the distribu-
tion JBF

1 (Q) to re-weight. According to Eq. (10), this is
equivalent to evolve for a time interval t an initial dis-
tribution JBF

1 (Q). Once the resulting distribution P(Q, t)
stops evolving with time t, the PMF G(Q) was extracted
using Eq. (5).

The PMF calculated according to this procedure is shown
in the left panel of Fig. 4, where it is compared with the exact
calculation of G(Q) obtained from an histogram of the Anton
equilibrium MD trajectories. These ultra-long MD simula-
tions include about a dozen unfolding-refolding events. We
see that our calculation of G(Q) is in overall good agree-
ment with the exact result. In particular, the height of the
barrier is accurately estimated, the transition state is correctly
located, and even the double hump structure of the barrier top
(which is due to the sequential folding of the individual hair-
pins) is well reproduced. A minor discrepancy—of the order
of 0.5 kBT—is observed only in the highly denatured region,
Q . 0.2. We note that an insufficient sampling of the denatured
state (which is plausible with only 8 initial conditions) would
lead to an underestimate of its entropic contribution, thus pro-
viding a possible explanation for overshooting the PMF in this
region.

The comparison with the negative logarithm of the initial
distribution of values of Q (central panel of Fig. 4) shows
that the short time evolution has significantly improved the
quality the estimate of G(Q), with respect to a naive histogram
analysis of the reactive trajectories. In the right panel of Fig. 4,
we show the estimates of G(Q) obtained evolving for different
time intervals. We see that after about 5 ns, our estimate for the
PMF stops to sizeably depend on t, suggesting that equilibrium
has been attained.

We can check a posteriori that the observed thermal-
ization time scale of 5 ns is quite reasonable. Indeed, we
expect this value to be of the same order of the time scale

FIG. 4. Left panel: PMF along the fraction of native contacts Q computed from a frequency histogram of equilibrium MD trajectories—GMD(Q)—and from the
short time evolution based on BF simulations developed in this work—GBF (Q). Center panel: Comparison of the results for G(Q) obtained before and after the
time evolution. Right panel: predictions for G(Q) obtained after time evolving the initial distribution J1(Q) calculated from BF simulations, for different time
intervals. Statistical errors in these curves have been estimated according to the following jackknife procedure. The set of 300 MD trajectories was split in six
subsets of 50 trajectories each. For six times, one group of trajectories was excluded from the calculation of the frequency histogram and the jackknife histogram
was computed as the average between the six results, equipped with the corresponding variance. Free energy was computed from the jackknifed histogram and
the statistical error was propagated correspondingly. The error on the free energy obtained from the Anton calculations was obtained in a similar fashion: the
two ∼100 µs trajectories were split in 20 trajectories of approximately ∼10 µs each. Frequency histograms were computed by excluding one short trajectory
from the set and iterating until all the trajectories were excluded once. Free energy was obtained by averaging on the corresponding frequency histograms and
propagating the corresponding variance.
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associated with local thermalization within the metastable
states. We recall that diffusion in a harmonic oscillator ther-
malizes in a time scale λHO =

D0
kBT G′′(Q0). By applying the

harmonic approximation to the PMF near the native state
with a typical value D0 ∼ 1 µs−1, we obtain 1/λHO

1 ∼ 10 ns,
which is of the same order of magnitude of the equilibra-
tion time scale of our simulations. Furthermore, by apply-
ing Kramers escape rate formula, we obtain a folding time
in the same order of magnitude of that observed in MD
simulations.

A final remark about systematic errors is in order. In
general, the initial distribution JBF

1 (Q) calculated from an his-
togram of trajectories obtained in BF simulations is expected
to provide only variational approximation to the exact J1(Q)
distribution (i.e., the one related to the reaction probability
current generated by the original MD). As a consequence, the
coefficient c1 of the BF distribution is not expected to be strictly
null. A small value of c1 implies that a residual discrepancy
between the BF estimate for G(Q) and the corresponding exact
result should persist even at times t & 1/λ2, ultimately fading
out only at time scales of the order of the thermalization time.
On the other hand, the agreement with MD suggests that this
systematic error is actually small.

Of course, an additional systematic error may arise from
the incomplete thermalization of the degrees of freedom
orthogonal to the collective variable Q. However, we empha-
size that the short MD simulations have been initiated from
several configurations sampled from independent reactive tra-
jectories, which visit an extended region of the orthogonal
subspace. Finally, we stress that our results have been obtained
by assuming that the dynamics of the collective coordinate is
diffusive and the diffusion coefficient is uniform.

IV. CONCLUSIONS

In this work, we have introduced an algorithm to compute
the PMF for an arbitrary collective variable Q. This method
is based on running many very short (5 ns) MD simulations,
starting from configurations harvested from the reactive path-
ways generated by means of the BF approach. The main idea
underlying this approach is to generate short relaxation trajec-
tories sampling an initial distribution such that the overlap with
the first eigenvalue of Fokker-Planck operator is null. Under
such a condition, the relaxation to thermal equilibrium of the
distribution of collective coordinate P(Q, t) is attained within a
time scale comparable to that associated with local relaxation
within the metastable states. For protein FIP35, a complete
characterization of the free-energy profile is required to simu-
late 1.5 µs of MD, a time comparable with the TPT of a single
folding event.

While computationally very efficient, this scheme is based
on a number of assumptions, thus potentially prone to some
systematic errors. However, direct comparison with the results
of plain MD simulations suggests that it may lead to result
which is sufficiently accurate to estimate free energy barrier
and locate the transition state.

As a final remark, we emphasize that the spectral decom-
position of the time-dependent probability density upon which
this method is based is also used for dimensional reduction

of Markov state models, e.g., via the Perron cluster analy-
sis42 or renormalisation group.43 It plays a central role also
in the diffusion map formalism,44,45 in view of the fact that
eigenstates of the backward Fokker-Planck operator define a
convenient Euclidean system of coordinates, directly related
to the diffusive distance.
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APPENDIX: PATH INTEGRAL FORMULATION
OF LANGEVIN DYNAMICS AND DERIVATION
OF THE BF VARIATIONAL CONDITION

In this appendix, we briefly review the PI formulation
of stochastic dynamics and we sketch the derivation of this
variational theorem underlying the BF approach. More details
on the mathematical proof of this result can be found in the
original publication.14

Our starting point is the Langevin description of the
dynamics in the solute and solvent,

miẍi = −miγiẋi − ∇iU(X, Y ) + ηi(t), (A1)

µÿi = −µσẏi − ∇iU(X, Y ) + ξi(t). (A2)

X = (x1, . . . , xN ) and Y = (y1, . . . , yNs ) denote the collection
of Cartesian coordinates, specifying, respectively, the con-
figuration of the solute and solvent. mi and µ, respectively,
denote the masses of the atoms in the protein and of the water
molecules in the solvent, while γi and σ are viscosity coef-
ficients. −∇iU(X, Y ) is the atomistic force field, while ηi and
ξ i are delta-correlated stochastic forces, obeying the standard
fluctuation-dissipation relationship,

〈ηi(t) · ηj(t
′)〉 = 6 miγikBT δij δ(t − t ′), (A3)

〈ξi(t) · ξj(t
′)〉 = 6 µσkBT δij δ(t − t ′). (A4)

Within the stochastic dynamics defined by Eqs. (A1)
through (A4), the conditional probability density p(X f , t|X i)
for the protein initially in configurations X i in the reactant
state to visit configuration X f in the product at time t can be
written as follows:

p(Xf , t |Xi) =
∫

dYf

∫
dYi

∫ Yf

Yi

DY
∫ Xf

Xi

DX e−S[X,Y ] e−βU(Xi ,Yi)

Z
,

(A5)
where β = 1/kBT. In this equation, the last exponential factor
is the Boltzmann distribution of the solvent molecules around
the initial protein’s configuration X i, Z is the system’s parti-
tion function, while S[X, Y ] is the so-called Onsager-Machlup
(OM) functional,

S[X , Y ] ≡
β

4

∫ t

0
dτ



N∑
i=1

1
γimi

(miẍi + miγiẋi + ∇iU(X , Y ))2

+
Ns∑

k=1

1
σµ

(µÿk + µσẏk + ∇kU(X, Y ))2


. (A6)
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The probability for the protein to perform a transition from
the reactant to the product within a given time interval t is
obtained by integrating the point-to-point conditional proba-
bility density (A5) over the set of protein configurations in
the product state (e.g., the native state) and by averaging over
the initial conditions in the reactant state (e.g., the unfolded
state),

PR→P(t) =
∫

dXPhP(Xf )
∫

dXihR(Xi) p(Xf , t |Xi) ρR(Xi),

(A7)
where hR(X) and hP(X) are the characteristic functions which,
respectively, define the reactant and product state and ρR(X)
is the density of configurations in the reactant. The stochastic
sampling of the transition probability (A7) for time intervals
t of the order of the TPT would provide an exact description
of the reactive dynamics. In the next paragraphs, we discuss
the BF approach, which provides a variational estimate of the
path integral (A5).

From Eq. (A5), it is immediate to read off a functional
distribution P[X] which measures the probability to fold
according to a specific folding pathway X(τ) in an unbiased
Langevin simulation started from a given initial condition XU

and unconstrained initial momenta,

P[X] =
∫

dYf

∫
dYi

∫ Yf

Yi

DY e−S[X,Y ] e−β U(XU ,Yi)

Z
. (A8)

We emphasize that in this expression, the solute trajectory X(τ)
is the argument of the path probability density functional, while
a path integral is performed over all solvent trajectories Y (τ).

Statistically significant folding pathways are close to the
functional maximum of the path probability distribution P[X]
and thus obey

δ

δX
P[X] ' 0. (A9)

After applying the standard reweighing trick, this extremum
condition can be expressed in terms of quantities which can
be extracted from biased simulations,

δ

δX
P[X] =

δ

δX

(
Pbias[X] 〈e−(S−Sbias)〉bias

)
' 0. (A10)

In this equation, Pbias[X] is the path probability density in the
biased dynamics, while the exponent in the second average
contains the difference between the OM functionals of the
biased and unbiased dynamics, respectively, averaged over the
solvent trajectories—cf. Eq. (A5).

Let us now restrict the sampling to a specific subspace
of folding pathways generated by the biased dynamics, which
therefore defines model subspace of our variational approach.
By definition, typical trajectories in this ensemble satisfy
δ
δX Pbias ' 0. Consequently, imposing the stationary condition
(A10) reduces to

δ

δX
〈e−(S−Sbias)〉bias ' 0. (A11)

Furthermore, we can exploit the convexity of the path proba-
bility distribution (Feynman-Kac theorem),

〈e−(S−Sbias)〉bias ≥ e−〈(S−Sbias)〉bias . (A12)

So, the optimal biased folding pathway is one for which the
path average

∫ dYf ∫ dYi ∫
Yf

Yi
DY (S[X , Y ] − Sbias[X , Y ])) e−Sbias[X,Y ] e−βU(XU ,Yi)

∫ dYf ∫ dYi ∫
Yf

Yi
DY e−Sbias[X,Y ] e−β U(XU ,Yi)

(A13)

is least.
Now, we recall that the rMD biasing force acts only on

the solute degrees of freedom. As a consequence, even though
the biased and unbiased OM actions individually depend on
the solvent and solute trajectories—X(τ) and Y (τ), the so-
called bias functional T [X] ≡ (S[X , Y ]−Sbias[X, Y ])) depends
only on the solute trajectory X. Thus, the path integrals in the
numerator and denominator of Eq. (A13) cancel out, leading
to the variational condition,

min T [X] = min (S[X, Y ] − Sbias[X , Y ]). (A14)

Finally, in the original paper,14 it was shown that, as
long as the trial paths are generated using the biased dynam-
ics, the BF functional T [X] can be well approximated as
follows:

T [X] '
∫ t

0
dτ

∑
i

1
4kBTmiγi

|Fbias[X, τ]|2. (A15)

In conclusion, the biased trajectories which have the largest
probability to occur in an unbiased simulation—cf. condition

(A9)—are those for which the biasing force has acted the least,
in the sense defined by the BF functional.
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